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A new model is presented for the dynamic analysis of a laminated circular ring segment.
The di!erential equations which govern the free vibrations of a circular ring segment and the
associated boundary conditions are derived by Hamilton's principle having consideration
for the bending and shear deformation of all layers. The author uses a new iterative process
to successively re"ne the stress/strain "eld in the sandwich arch. The model includes the
e!ects of transverse shear and rotatory inertia. The iterative model is used to predict the
modal frequencies and damping of simply-supported sandwich circular arch. The solutions
for a three-layer circular arch are compared with a three-layer approximate model.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Laminated composite curved beams have been used in engineering applications for many
years. Design applications of isotropic and curved bars, rings and arches of arbitrary shape
are assisted by a well-developed theory and proven design guidelines [1}4]. The
development of the theory and design guidelines for composite curved beams is much less
satisfactory. Earlier works relate to sandwich beams or closed composite rings [5}9]. The
"nite element method was used to study the dynamic response of sandwich curved beams by
Ahmed [5, 6]. Free and forced vibrations of a three-layer damped ring were investigated by
Di Taranto [7]. Lu and Douglas [8] investigated the damped three-layered sandwich ring
subjected to a time harmonic radially concentrated load. The paper gives an analytical
solution for the mechanical impedance at an arbitrary point on the surface of the damped
structure as a function of the forcing frequency. Furthermore, an experimental procedure is
employed to measure the driving point mechanical impedance as a veri"cation of the
calculated results. Transient response was studied for three-layer closed rings by Sagartz
[9]. Damping properties of curved sandwich beams with viscoelastic layer were studied by
Tatemichi et al. [10]. Viscoelastic damping in the middle core layer was emphasized.
Nelson and Sullivan [11] analyzed the complete circular ring consisting of a layer soft

viscoelastic material sandwiched between two hard elastic layers. The equations which
govern the forced vibration of a damped circular ring were solved by the method of damped
forced modes. The essence of the damped forced mode method is the use of harmonic
forcing functions which are in-phase with the local velocity and proportional to the local
inertia loads. The constant of proportionality is the loss factor of the composite structure,
�
�
. A clear alternative to a damped forced mode solution is to set all the forcing functions to

zero and solve the resulting complex eigenvalue problem. Isvan and Nelson [12] have
investigated the natural frequencies and composite loss factors of the free vibration of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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a soft-cored circular arch simply supported at each end. Although harmonic motion is
assumed, what is not stated is that some harmonic excitation is required to maintain such
motion in the presence of damping. The dynamic eigenvalue problem is then posed for an
unforced system. Kovacs [13] solved the problem of free vibrations of a sti!-cored sandwich
circular arch. All the tangential displacement components are assumed to be piecewise
linear across the thickness, thus implying the inclusion of shear deformations and rotary
inertia.
The incremental equations of motion based on the principle of virtual displacements of

a continuous medium are formulated using the total Lagrangian description by Liao and
Reddy [14]. They developed a degenerate shell element with a degenerate curved beam
element as a sti!ener for the geometric non-linear analysis of laminated, anisotropic,
sti!ened shells. Bhimaraddi et al. [15] presented a 24 d.o.f. of isoparametric "nite element
for the analysis of generally laminated curved beams. The rotary inertia and shear
deformation e!ects were considered in this study. Qatu developed a consistent set of
equations for laminated shallow [16] and with Elsharkawy for deep arches [17]. Exact
solutions are presented for laminated arches having general boundary conditions by Qatu
[18]. The in-plane free vibrational analysis of symmetric cross-ply laminated circular arches
was studied by Yildirim [19]. The derivation of the free vibration equations are based on
the distributed parameter model. The transfer matrix method is used in the analysis. The
rotary inertia, axial and shear deformation e!ects are considered in the Timoshenko
analysis by "rst order shear deformation theory. Vaswani et al. [20] have derived by the
Ritz method a closed-form solution for the system loss factors and resonance frequencies for
a curved sandwich beam with a viscoelastic core. He and Rao [21] have used the energy
method and Hamilton's principle to derive the governing equation of motion for the
coupled #exural and longitudinal vibration of a curved sandwich beam system. Both shear
and thickness deformations of the adhesive core are included. Equations for obtaining the
system modal loss factors and resonance frequencies were derived for a system having
simply-supported ends by the Ritz method.
It is well known that the accurate determination of the stress "eld in the laminate

con"gurations is particularly important for &&stress critical'' calculations such as damping
and delamination. Zapfe and Lesieutre [22] developed an iterative process to re"ne
successively the shape of the stress/strain distribution for the dynamic analysis of laminated
beams. The iterative model is used to predict the modal frequencies and damping of simply
supported beams with integral viscoelastic layers.
The eigenproblem of the plane bending of circular arch-shaped layered beams was

investigated by using the "nite element method by Kovacs et al. [23]. The "nite element
model of the structure has two elements along the face thickness and three elements along
the thickness of the core. The two edges of the circular arch are simply supported. This
model consists of eight-node hexahedron 3D elements (280 pcs).
Flexure of the three-layer sandwich arch results in energy dissipation due to strains

induced in the viscoelastic layer. In a symmetrical arrangement with identical elastic layers,
most of the damping is due to shear in the viscoelastic layer. In an unsymmetrical
arrangement, with dissimilar elastic layers, one might expect damping due to direct strain as
well as shear in the viscoelastic layer, the former being known as extensional damping and
the latter as shear damping. Both these e!ects have been included by Kovacs [24].
However, the stress}strain law assumed for the viscoelastic layer was not strictly correct
and was only an approximation if extensional e!ects were considered. An analysis of the
vibration of transversely isotropic beams, which have small constant initial curvature was
presented by Rossettos [25], and Rossettos and Squires [26]. A closed-form general
solution to the governing equations was derived. Natural modes and frequencies were
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determined for both clamped and simply-supported end conditions. In reference [27], an
analysis of the vibration of slightly curved cross-ply laminated composite beams is
presented. Hamilton's principle is used to derive the equations of motions of four theories.
Exact natural frequencies are determined for various end conditions using the state-space
concept. The combined e!ects of initial curvature, transverse shear deformation,
orthotropicity ratio, stacking sequence and boundary conditions are evaluated and
discussed. Yildirim [28] o!ers a comprehensive analysis of free vibration characteristics of
symmetric cross-ply laminated circular arches vibrating perpendicular to their planes.
Governing equations of symmetric laminated circular arches made of a linear,
homogeneous, and orthotropic material are obtained in a straightforwardmanner based on
the classical beam theory. The transfer matrix method is used for the free vibration analysis
of the continuous parameter system.
The present research extends the iterative laminated model developed by Zapfe and

Lesieutre to the dynamic analysis of laminated circular ring segment. The current model is
developed for the speci"c case of simply-supported circular ring segment with uniform
properties along the length.

2. GOVERNING EQUATIONS OF MOTION

The geometry of interest and the notation used are shown in Figure 1. As indicated in the
"gure, the ring segment ends are simply supported. Consider the curved sandwich arch with
a circular centreline and a constant rectangular cross-section. The arch consists of three
di!erent layers of homogeneous materials bonded together to form a composite arch.
Subscript i, where i"1, 2, 3 is used to denote quantities in the various layers, starting from
the outermost layer, so that layers 1, 3 represent the elastic layers while 2 represents the
viscoelastic layer. A state of plane stress is assumed, as well as the fact that the materials in
each layer of the arch are homogeneous isotropic. Perfect bonding of the layers and linear
elasticity are also assumed in the analysis. The composite arch is lightly damped and it is
assumed that all the energy is dissipated in the viscoelastic layer. The radial displacement is
Figure 1. The geometry of the laminated circular ring segment.
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the same for all three layers. The form of the displacement "eld over the domain of the
circular arch is

t(r, �, t)"u (r, �, t)e�#w (�, t)e
�

"� v(�, t)!
r!R

R �
�w
��

!v (�,t)�#f (r)g(�, t)�e�#w(�, t)e
�
, (2.1)

where f (R)"0.
The term f (r)g(�, t) can be considered as a correction to account for transverse shear

e!ects. The function f (r) represents the shape of the correction through the thickness of the
arch, while g(�, t) determines its distribution along the length. The solution of a given
problem requires the determination of the unknown functions v(�, t), w (�, t), g (�, t) and
f (r).
By using
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From equation (2.3), it can be seen that the function df/dr!f /r represents the shape of
the transverse shear strain "eld through the thickness of the arch, at a given �-location.
While the assumed form of the shear correction, f (r) will change from one iteration to the
next, at any given iteration it can be treated as a known function.
The strain energy stored in the circular arch is given by
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The kinetic energy, which includes components associated with transverse, in plane and
rotary inertia, is given by
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where the dots over t
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, t
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and t
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denote the partial derivative with respect to time. The

di!erential equations of motion and boundary conditions are derived using Hamilton's
principle. The equations of motion for the three unknown functions, w (�, t), v(�, t) and
g(�, t) are
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where A
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are given in Appendix A. K
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is a single-valued function de"ned at each point through the thickness.
The kinematic and natural boundary conditions speci"ed at �"0 and �, are given by
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where F
��
are constants. For the special case of a simply-supported arch, the "rst, third and

fourth natural boundary conditions are combined with the kinematic condition, w"0.

3. SOLUTION FOR A SIMPLY SUPPORTED ARCH

Sinusoidal mode shapes that satisfy the boundary conditions are assumed. Consequently,
the assumed displacements are
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�)e��� �,
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where k
�
"(n�)/�. Since the motion is now harmonic, it is legitimate to admit hysteretic

damping into the viscoelastic layer by putting the moduli a complex form. Young's and the
shear modulus of the constituent materials are represented by the complex quantities
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�
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�
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�
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�
), (3.4)

where �
�
and �

�
denote the material loss factors in extension and shear respectively. Since

the complex G*
�
and E*

�
are used as complex moduli of the middle layer, the di!erential

equations of motion will have complex coe$cients. The substitution of equations (3.1), (3.2)
and (3.3) into equations (2.6), (2.7) and (2.8), will result in a set of three simultaneous,
homogeneous algebraic equations with symmetric and complex coe$cients. In matrix form,
these equations are
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where M
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and K
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are in Appendix A. The complex eigenvalues give the desired natural

frequencies and mode shapes with their phase relations. The natural frequency is
approximately equal to the square root of the real part of the eigenvalue. The modal loss
factor for the nth mode is approximately equal to the ratio of the imaginary part of the
eigenvalue to the real part of the eigenvalue
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4. IMPROVED ESTIMATE FOR SHEAR CORRECTION FUNCTION f (r)

An improved estimate for the shear correction function f (r) is derived from the equation
of elemental stress equilibrium. The equations of motion in plane stress
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The shape of the shear stress distribution can be found by integrating equation (4.3)
through the thickness
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The shape of the shear strain distribution is calculated using equation (4.4) and the
constitutive relation
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The new estimate for the shear correction function f (r) obtained by integrating equation
(2.3) through the thickness, is given by
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with evidently f (R)"f
�
(R)"0 at the reference axis. The integrals in equations (4.7)}(4.9)

are evaluated numerically using a trapezoidal method and f (r) can be a complex quantity.
This new estimate of f (r) is used as the shear correction function for the next iteration. As
with any smeared laminate model, there are two distinct ways to calculate the shear stress
distribution: from the material constitutive relations; or by elemental stress equilibrium.
The ultimate goal of the iterative analysis is the determination of the function, f (r), that
causes the two stress distributions to be equal. This de"nes the convergence point for the
iterative function f (r), the point at which the stresses and strains are self-consistent.

5. RESULTS AND DISCUSSION

Numerical results were generated to observe the e!ects of curvature, core thickness and
adhesive shear modulus on the system natural frequencies 	

�
and modal loss factors �

�
.

Vaswani et al. [20] assembled a series of design curves for the dynamic characterization of
a three-layer damped circular ring segment which is simply supported at each end, (see
Figure 1). The model assumes that all transverse shear deformation and energy dissipation
occurs in the core material. The dissipation is modelled using a complex modulus
formulation. The resonant frequencies and the associated system loss factor have been
experimentally determined for four sandwich beam specimens and the values compared
with those obtained theoretically. Reasonably good agreement is seen between the
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theoretical and experimental results. However, the model of Vaswani et al. overpredicts
natural frequencies by 5%, approximately. The present smeared laminate model was
compared to design curves a reference [20] for the "rst four transverse modes with
simply-supported boundary conditions.
The adhesive shear modulus plays a very important role in the damping of the sandwich

circular ring segments. The variations of the lowest natural frequency and associated loss
factor with respect to the shear modulus G

�
("real part of G*

�
) is given in Table 1 for the

three-layer arch using reference [20]'s design curves and the present laminate model. The
input data used here were h

�
"h

�
"h

�
"2)0 mm, �"1)0, �

�
"�

�
"0)5, R"1)0m,

E
�
"E

�
"6)88�10�� N/m�, G

�
"G

�
"2)75�10�� N/m�, �

�
"�

�
"2)7�10� kg/m�,

�
�
"�

�
/2. G

�
was varied from 6)88�10� N/m� to 6)88�10 N/m� and E

�
"3)0 G

�
. The

present smeared laminate model frequency predictions are generally consistent with the
Vaswani et al. results. The slight discrepancy is due to facesheet shear and rotary inertia,
e!ects which Vaswani et al. did not consider. Vaswani et al. overpredict natural frequencies
by 5%, approximately. The modal loss factors predicted by the present laminate model are
also in good agreement with those of Vaswani et al. The variation of the system loss factor
� with the shear modulus G

�
is similar to that obtained for straight sandwich beams. For

each core thickness, a maximum is observed which increases as the core thickness increases
and is also seen to occur at higher values of the shear modulus. At low values of shear
modulus, although the deformations are large, the shear sti!ness is small, hence low
damping is observed. At very high values of shear modulus, the shear sti!ness is high, the
deformations are small, again resulting in low damping.
The e!ects of the adhesive thickness 2h

�
on the system natural frequencies and loss

factors are also studied. The input data in this case were h
�
"h

�
"2)0 mm, �"1)0,

�
�
"�

�
"0)5, R"1)0 m, E

�
"E

�
"6)88�10�� N/m�, G

�
"G

�
"2)75�10�� N/m�,

�
�
"�

�
"2)7�10� kg/m�, �

�
"�

�
/2, G

�
"6)88�10� N/m�, E

�
"3)0G

�
. The thickness

2h
�
was increased from 1.0mm to 5.0mm in steps of 1.0mm. The variations of f and � with

2h
�
are given in Table 2. It can be seen from this table that both f and � increase with 2h

�
.

The third parameter which a!ects the system natural frequencies and modal loss factors
is the radius of curvatureR of the middle surface of the adhesive layer. In this case , the angle
� is kept constant, while changing R. This means the total length of the sandwich arch
system will change with R. The variations of f and � with R are shown in Table 3. The input
data was h

�
"h

�
"h

�
"2)0 mm, �"1)0, �

�
"�

�
"0)5, E

�
"E

�
" 6)88�10�� N/m�,

G
�
"G

�
"2)75�10�� N/m�, �

�
"�

�
"2)7�10� kg/m�, �

�
"�

�
/2, G

�
"6)88�10� N/m�,

E
�
"3)0G

�
. R was varied from 800mm to 1200mm in steps of 100mm. It can be seen that

f decreases with R. The variations of f with R are obvious, as the total length of curved
sandwich beam system increases with an increases in R.
TABLE 1

<ariation of the lowest frequency and the loss factor with adhesive shear modulus

20 Present theory

G
�
(N/m�) f (Hz) � f (Hz) �

6)88�10� 7)898 0)0644 7)52 0)0644
6)88�10� 11)36 0)2504 10)83 0)2504
6)88�10� 20)94 0)1696 19)95 0)1696
6)88�10	 25)8 0)0272 24)58 0)0273
6)88�10 26)47 0)0029 25)23 0)0034



TABLE 2

<ariation of the lowest frequency and the loss factor with adhesive thickness

20 Present theory

2h
�
(mm) f (Hz) � f (Hz) �

1)0 17)981 0)0546 17)06 0)0546
2)0 19)1 0)01 18)2 0)01
3)0 20)09 0)138 19)14 0)138
4)0 20)94 0)1696 19)95 0)1696
5)0 21)66 0)196 20)64 0)196

TABLE 3

<ariation of the lowest frequency and the loss factor with radius R

20 Present theory

R (mm) f (Hz) � f (Hz) �

800 29)75 0)211 28)35 0)211
900 24)78 0)1895 23)61 0)1895
1000 20)94 0)1696 19)95 0)1696
1100 17)9 0)1516 17)06 0)1516
1200 15)469 0)1357 14)739 0)1357

TABLE 4

Geometrical parameters of the specimens

Specimen Length (mm) Radius (mm) 2h
�
(mm) 2h

�
(mm) 2h

�
(mm)

1 900 900 3)12 4)0 3)12
2 300 300 0)66 2)0 0)66
3 300 300 1)5 2)0 0)5
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The present smeared laminate model was compared to the Vaswani et al. design curves
for the "rst, second, third and fourth modes presented in the pages of Vaswani et al. with
simply-supported boundary conditions. The geometrical parameters of the specimens are
given in Table 4. The input data in this case were �

�
"�

�
"0)5, E

�
"E

�
"6)88�

10�� N/m�, G
�
"G

�
"2)75�10�� N/m�, �

�
"�

�
"2)7�10�kg/m�, �

�
"�

�
/2, G

�
"

6)88�10� N/m�, E
�
"3)0G

�
. The variations of f

�
and �

�
(n"1, 2, 3, 4) is given in

Table 5 for the three specimens. Reasonably good agreement is seen between the present
laminate model and Vaswani et al. result.

6. CONCLUSIONS

A new iterative laminate model has been presented for thin sandwich arches that can
accurately determine the dynamic stress distribution in soft as well as hard-cored sandwich



TABLE 5

Comparison of frequency and loss factor with results from reference [20] for a circular ring
segment

[20] Present theory

f (Hz) � f (Hz) �

First mode
Specimen 1 22)7 0)1708 21)82 0)1708
Specimen 2 63)24 0)177 60)26 0)177
Specimen 3 68)33 0)1728 65)8 0)1736

Second mode
Specimen 1 67)54 0)284 66)85 0)284
Specimen 2 185)44 0)3244 183)12 0)3244
Specimen 3 208)37 0)268 207)76 0)2667

¹hird mode
Specimen 1 119)5 0)284 118)94 0)2839

Fourth mode
Specimen 1 181)5 0)248 181 0)2479
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archs. This represents an advance over previous smeared laminate models, in which
accurate estimates of the stress "eld were only possible if the assumed displacement "eld
was a reasonable approximation of the actual diplacement "eld.
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APPENDIX: EQUATION DEFINITIONS

Equations (2.6)}(2.8) in the main text contain certain A
��
and D

��
terms which are de"ned

as follows:
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Equation (3.5) in the main text contain K
��
andM

��
terms which are de"ned as follows:
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APPENDIX B: NOMENCLATURE

b width of the arch
E
�

elastic modulus of layer i
E*
�

complex modulus in tension
e
�

unit vector in the radial direction
e� unit vector in the transverse direction
e
�

unit vector in the z-direction
���

tensile strain of layer i
f (r) shear correction function
�
���

shear strain of layer i
G*

�
complex modulus in shear

G
�

shear modulus of layer i
h
�

half-thickness of layer i
� circumferential co-ordinate
n mode number
r cylindrical co-ordinate
R radius of centreline of the arch
¹ kinetic energy
��

tensile stress of layer i
�
���

shear stress of layer i
t
�

displacement vector of layer i
R

�
radius at the bottom of the "rst layer

R
�

radius at the top of the "rst layer
R

�
radius at the bottom of the third layer

R
�

radius at the top of the third layer
�
�

material loss factor in tension of the second layer
�
�

material loss factor in shear of the second layer
�
�

composite loss factor for the nth mode
	

�
frequency of oscillation in radians for the nth mode

f
�

frequency of oscillation in Hertz for the nth mode
�
�

density of layer i
� opening angle of ring segment
v tangential displacement of the centreline
w radial displacement of the centreline
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